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Main subject of research — complex objects (CO)
(Example 1)
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Main subject of research — complex objects (CO)
(Example 2)
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Main subject of research — complex objects (CO)
(Example 2)
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Main subject of research — complex objects (CO)

(Example 2)
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Automated Control Systems of Enterprise
Main subject of research — complex objects (CO). (Example 3)
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Cyber-physical systems

The CPS allow to realize principles and technologies

of feed-back control not only for technical objects but also for

other types of complex objects -
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unit
Currently Smart
management and control Sensor
of CFS interactions are not yet fully formalized
_ Data
unit




Cyber-physical systems and Smart Factory
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The place of planning and scheduling phases in CO automation control
system (ACS) generalized technology (part 1)

Planning and scheduling are essential functions in
complex object management and control technology.

Planning stage

- preliminary aggregated evaluation of the possibility
for performing the given sets of CO operations on the
given sets of CO resources

Scheduling stage

- concrete distributions of CO tasks, jobs, works,
operations, and flows among the CO resources iIn
time
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The place of planning and scheduling phases in CO automation control
system (ACS) generalized technology

Now in the sphere of CO planning and scheduling are distinguished
different types of tasks:

 Open shop planning and scheduling tasks;

« Job shop planning and scheduling tasks;

 Flow shop planning and scheduling tasks;

 Release dates planning and scheduling tasks;

« Recourse Constrained Project planning and scheduling tasks.

We propose to expand the last generalized class of CO
planning and scheduling tasks adding up the tasks of
parallel synthesis of
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The interconnection tasks of synthesis production technologies,
production management and control technologies synthesis with tasks of
planning and scheduling in Industrial Internet of Things
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1he interconnection tasks o1 synthesis production technologies, proauction
management and control technologies synthesis with tasks of planning and
scheduling in Industrial Internet of Things
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The exist methods and algorithms for solving CO planning and
scheduling problems

Scheduling algorithm
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Fundamental problems of CO planning and scheduling

problem of high dimensionality non-linearity, and non-stationarity of CO
models;

problem of uncertainty factors description;

problem of multi-criteria decision making on the basis of multiple-model
complex;

problem of parallel synthesis of production technologies, production
management (control) technologies and CO plan, schedule ;

The main features and difficulties of the problems belonging to the last class are
following:

optimal control programs for CO main elements and subsystems can be
Implemented only when the list of functions and algorithms for control is
Known.

In its turn, the distribution of the functions and algorithms among the CO
elements and subsystems depends on the control laws actual for these
elements and subsystems.
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Our solution for CO planning and scheduling problems by

optimal control

We propose a new applied theory of complex objects structural
dynamics proactive control which is accumulats the main fundamental
and practical results of different modern theories: system analysis,
operation research, artificial intelligence, management, control theory

System analysis CO structure
dynamics proactive
/> control theory
Artificial Operations
intelligence research

~

Management Control theory

The theory of CO structure-dynamics proactive control as a
scope of interdisciplinary researches
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Proposed methods and algorithms for solving CO planning and
scheduling problems

Planning and scheduling
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Processes of Complex Objects Structure-Dynamics Control
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Redistribution of functions, problems and
control algorithms among CO levels
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Redistribution of functions, problems and
control algorithms among CO levels
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Set-theory Based Description of CO Planning and Scheduling Problem as

a Structure-Dynamics Control Problem

To interconnect the structures the following dynamic alternative
multi-graph (DAMG) can be

t t t t
GZ - <X1’F1’Zz>,
where the subscript y characterizes the CO CS structure type, yeNS =
={1,2,3,4,5,6} (here 1 indicates the topological structure, 2 indicates
the functional structure, 3 indicates the technical structure, 4 and 5

Indicate the structures of mathematical and software tools, 6 indicates
the organizational structure, the time t belongs to a given set T,

t t
X 7= {x,t,nl € L,} is a set of elements of the structure GZ (the set
of DAMG vertices) at the time point t; F; = {f<t,,,,,,r>ala l' ELZ} IS a
t
set of arcs of the DAMG G , the arcs represent relations between

the DAMG elements at time t; Z,t, - {f<t,(,,,,r>ala l'e Ll} Is a set of
parameters that characterize relations numerically.
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Set-theory Based Description of CO Planning and Scheduling Problem as
a Structure-Dynamics Control Problem

The problem of CO structure-dynamics

t, control can be regarded as a problem of
g l M<Nl> selection an optimal multi-structural
macro-state Sf and synthesis of optimal
program (plan and schedule) for CO
transition from initial multi-structural
z  macro-state SO to multi-structural
Sf macro-state Sf.

The results of this optimal program selection can be
presented as an optimal production, management and
control technology, and optimal program (plan and
schedule) for CO functioning.
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Description of Concept Model for CO
Structure-Dynamics Control Processes in the Flows Space

A, —subsystem of CO
number “n”

m — material flows

e —energy flows

| —information flows

23



Methodological Basis of CO Planning
and Scheduling by Optimal Control

Methodological basis includes:

‘s methodology of generalized system analysis
“s*methodology of CO modern optimal control theory

Methodologies include following concepts and principles. The
main are:

¢ concept of integrated modelling and simulation
¢ concept of proactive control and management
¢ principle of goal programmed control

¢ principle of external complement

¢ principle of necessary variety

¢ principles of multiple-model and multi-criteria
approaches

¢ principle of new problems
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Methodological Basis of CO Planning and Scheduling by Optimal Control

The concept of complex modeling and simulation supposes the
Implementation of methodology and technologies of CO multiple-
model description and combined use of methods, algorithms and
techniques

of multi-criteria analysis, synthesis and

decision making under
various conditions of
dynamically changing

environment




Methodological Basis of CO Planning and Scheduling by Optimal Control

Models of CO
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AOM-analytical optimization modelling, SOM-simulation optimization modelling, AN- analysis of received
results, C- correction of obtained solution,

A @ AW sets of allowable alternatives which are described analytically or algorithmically

The schemes of coordination for models and measures of effectiveness can differ in: methods of
solution generation in CO SDC tasks: rules of constraints verification for analytical and
algorithmically constraints: variants of interactive elimination of allowable  alternatives

Cvirkun AD .Institute of Control Sciences
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General Formal Statement of CO Structure-Dynamics Control Problem

Dynamic interpretation of operations execution

Traditional approach to operation description is the program evaluation-
and-review technique (PERT) based on static models

where:

X; IS the state of operation (activity);

T, - is the duration of operation;

Q, — is the volume of operation (a transaction),
v IS the speed of operation execution
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Dynamic Model of Operation Control (M,)

The execution dynamics of the job (operation) can be

d (o)
:;f o m; (0)
=Xy = Z‘E j (DU (1)

Equation (1) describes thejob execution in time

X7 = ZZZZ( ) 2)

1=l n=1 u=1 p=l
n#i

Equation (2) represents resource utilization
In job execution dynamics
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Dynamic Model of Operation Control (M,)

The execution dynamics of the job can be expressed

d}:{”}
= “’”’—qu(f)“fﬁi )

job state variable,
(o) means “operation”

§ =YY S ) @)

1=l n=1 u=1 p=1
N+

Equation (2) represents resource utilization
In job execution dynamics
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Dynamic Model of Operation Control (M,)

The execution dynamics of the job can be expressed

dt_{n] as

I
g (o) _ (o)
— = = 2 (0 )
f =

control input that is
equal to 1 if the job “i”,
operation “m” is being
executed on resource
“I”’and equal to 0 if not
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Dynamic Model of Operation Control (M,)

The execution dynamics of the job can be expressed

d}:{”}
I — H?] z E‘” (f)Lf::i (1)

preset matrix function of
time assigning time-
spatial constraints

MOTU WE TH FR SASU

VIV OO
V¥ QSO
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Dynamic Constraints

Zzu;ﬁ;(f)_l Vji; Zuj;j(:)g 1, Vi, Vu 2)
i=l p=l1 Jj=1

allocation problem constraint according to the problem statement
(i.e., only a single operation can be processed by single resource at any
time by the manufacturer)

Sl 3 @ =+ TT @l =xin=0 3)

ol .ﬂEr.-,u_n

if

{{J} this constraint implies the
HU (f) S {U 1} blocking of current operation (4)

_ until the previous operation(s)
controls contain the values have been executed

of the Boolean variables

u“( T,)=0: X::f"(]’“) ::If:i, _ | initial and end conditions (5)
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Dynamic Model of Flow Control (M,)

Mathematical model of flow control in the form of equation:

- (f) . (f) - (f) _ (f)
'lf'.ﬂ.f P Hh“f J’EHLO Hr;f?ﬂ (6)
Processing flow on resource Transferring flow
Constrains
)[4y < m Z () 4y < PU) v
ZZ“rm (1)< R Uinp (D) = R (7)
=l u=l =1
total potential intensity maximal potential intensity of
of flow processing flow transferring
( ) .':.-'F.] o) i ) lf} lf»','l
0 < Uy (1) S Cppp - Uy, 0< Ui, (1) S Cpyi - Ui (8)
potential intensity of potential intensity

processing flow on resource  Of flow transferring with unit
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The current dimension of CO planning and scheduling tasks is determined by
the front of active work, marked in gray.

Completed work, marked in black, and work that, according to logical
conditions, cannot begin, are not included in the current dimension. With

traditional approaches, all the works define the current dimension of the planning
and scheduling task.
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Performance Indicators

Accuracy of the end conditions accomplishment

J© =— Ezl(a“” Xy (N (9)

rl,u]

Estimation of an operation execution time with regard to the preferable
mtervals

]cn} ZZZJ. (quf(’.{')tm,('r)df (10)

=l u=1 j=1 T,

Estimation the equal resource utilization of complex object

() l - g L) o rp 2
J)" = 521(1 —x"(T))) (11)
i
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— dynamic model of
CO motion control;
M, — dynamic model of
CO channel control;
M, — dynamic model of
CO operations control;

M, — dynamic model of
CO flow control:

M_ — dynamic model of
C6 resource control;

— dynamic model of
CO operation parameters
control;

— dynamic model of
CO structure dynamic
control;

M — dynamic model of
CO auxiliary operation
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The scheme of CO planning and control multiple
models interconnection
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The Main Phases of CO functional technology and proactive control
program synthesis

At the first phase we generate E
CO allowable muilti-structural

macro-states. In other words a
structure-functional svnthesisEl‘
of new variants CO PT, PMCT,
should be obtained.

A™()

Orthogonal projection of target
set of production quality
requirements is performed

As a result, of projection, we
form a set of Pareto of
production process preferred
states at the end of the
planning interval

We have implicitly description
of new variants CO PT, PMC

Attainable set of CO
structure dynamics control
multiple models in
multidimensional state
space
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The Main Phases of CO functional technology and proactive control
program synthesis

At the second phase a single multi-structural macro-state is being
selected, and adaptive plans (programs, schedule) of CO
transition to the selected macro-state are constructed. These
plans should specify transition programs, as well as programs of
stable CO operation in intermediate multi-structural macro-states.

n Attainable

set #1

I.l""" Y

T~ | ,f"

i b Vs IJ

/-

g ¥ & axr .-’;;
- ) .;j N
al Attainable
set #2 /
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General Structure of Simulation System (SIS)

models of simulation system
models of evaluation

models of CO (observation) and decision-making
Control System (CS) analysis of models for control
and object-in-service structural states processes in
(OS) functioning and CO CS CO CS

| structure-dynamics |
|

[
system of control,

coordination, Decision-maker
and interpretation

data-ware
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Conception description of ship building manufacture

Hulk processing

Welding assembling

Building berth

manufacture manufacture
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Sea trials
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Data and data structure design

Implementation. Step 1
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Data and data structure design
Implementation. Step 1
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Implementation. Step 2

A fragment of alternative graph showing variants of
ship building production.
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Implementation. Step 2

SBM alternative processes description with BPMN
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Implementation. Step 3

Results of Plans and Schedule Synthesis
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Implementation. Step 3
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Implementation. Step 4

Models of CO

SDC
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AOM-analytical optimization modelling, SOM-simulation optimization modelling, AN- analysis of received
results, C- correction of obtained solution,
A (8) ~ A (U)  sets of allowable alternatives which are described analytically or algorithmically



Simulation modeling CO
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The tasks of synthesis production technology, planning, scheduling of
material, data and information processing synthesis in T
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1. Data collecting. . Data preprocessing.
3. Main data processing. 4. Formation of control.
5. Implementation of control. 6. Transfer to the data processing century.
7. Data preprocessing. 8. Main data processing.
9. Formation of control. 10. Data processing century. Cloud.
11. Data processing century pf the cyber-physical system. 12. Data processing century. Cloud.
13. Data processing century pf the cyber-physical system. 14. Data processing century. Cloud.
15. Data processing century. Cloud. 16. Data processing century pf the cyber-physical system.
17. Data processing century pf the cyber-physical system. 18. Data processing century. Cloud.
19. Data processing century. Cloud. 20. Transfer to the cloud.
21. Data preprocessing. 22. Main data processing.
23. Formation of control. 24. Cloud of the data processing century.
25. Cloud of the cyber-physical system. 26. Cloud of the cyber-physical system.
27. Transfer to the cyber-physical system. 28. Cloud of the data processing century.
29. Cloud of the data processing century. 30. Transfer to the cyber-physical system.




The task solution of significantly synthesizing technology, planning,
scheduling of data and information processing in lIT

Number of computing processes: 3

For each process:

* Number of transactions: 30 basic and 8 subsidiary
« Number of logical links: 54

« Number of alternative technologies: 120

« Number of resources (computing devices): 3

The volume of the information flow of operations: from 1 to 6
GB

Speed of information flow processing resources: from 1 to 3 GB
per minute

Operation time: from 20 seconds to 6 minutes
Average implementation time: 10 minutes
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The task solution of significantly synthesizing technology, planning,
scheduling of data and information processing in lIT

Centralized architecture Vague architecture Cloud architecture

1\}_ & 3_5_/ Eu %

Hybrid architectures
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The task solution of significantly synthesizing technology, planning,
scheduling of data and information processing in lIT

The results of modelling:

Energy consumption reduction — on average by
21%

Reduction of time of execution — on average by 6%

Increase In uniformity of loading of resources — on
average by 14%

Improvement of the generalized indicator of quality
of the plan — on average by 26%
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Energy plan and schedule optimization

npeﬂnou'reuue oTAasTCA COKPAWEHWIO CTOMMOCTH peanM3alWM nnaHa
OHcne ruepekHii nnaH

MoxaaaTent CTOMMOCTH PEaNHIaLAK nnaHa: 3860 HeuriStiC plan and SChedUIe

Bpemn peanv3almi nnada: 54
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Cost Indicator: Improvement by - 62%
Plan Implementation Time:
Deterioration on - 20%
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Time plan and schedule optimization

MpeanouyTeHHe 0TAAETCA COKPALLLEHWIO BPEMEHH PEann3aLnK nnaHa
[OMcneTe pckii naad

e AR ] Heuristic plan and schedule

—
——

Cost Indicator: improvement by -37%
Plan Implementation Time:
improvement by -20%
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Conclusions

We propose to expand CO planning and scheduling tasks adding up
the tasks of production technologies and production control and
management technologies synthesis. We offer to research and solve
these new tasks based on common methodological foundations oriented
to modern control theory

Therefore, the fundamental and applied scientific results obtained in
the complex technical objects modern control theory can be extended to
those areas of CO production management that traditionally used the
methods of mathematical programming and operations research.

This approach makes it possible to improve the quality of CO planning
and scheduling processes as compared with existing approaches, as
well as formally describe and solve fundamentally new production
planning and scheduling tasks that have never been fulfilled.
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The implementation of control theory fundamental results for
manufactory planning and scheduling processes

The main results

Implementations of the results

Criteria for existence of a
solution in CTO structure-
dynamics control (SDC)
problems

Manufactory (MF) planning and scheduling
models verification and validation

Criteria for controllability
and attainability in CTO SDC
problems

Control processes verification for a given
time interval/ Determination of the
constraints restricting MF goal abilities and
information technology abilities

Criteria for uniqueness of
optimal program control in
CTO SDC problems

Analysis of possibility to obtain an optimal
MF plan and schedule

Necessary and sufficient
conditions of optimality in
CTO SDC problems

Preliminary analysis of MF optimal plan and
schedule structures ; generation of basic
formulas for
MF planning and scheduling algorithms

Criteria for sustainability and
sensitivity in CTO SDC
problems

Evaluation and estimation of MF plan and
schedule sustainability and
sensitivity for environmental impacts
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Methodological Basic of CO Planning and Scheduling Models’ Quality
Estimation

Multiple-model
description CO planning
and scheduling

Concepts of
comprehensive simulation,
of control theory, of
knowledge engineering, of

quality control.

Principles of
requisite variety, of
complementation, of
immersion.

Adequacy, flexibility
(adaptability), multi-
functionality and
unification, availability,
intellectuality.

Development of theoretical basics for
CO planning and scheduling
models’ quality estimation and
models’ quality control

Classification of
models,estimation of model’s
and meta-model’s
characteristics such as
adequacy, sensitivity,
operability, controllability,
attairability Dan @ relials:lity

Identification of parameters,
observation of current situation

Multi-attribute ranking of
models, model selection,

model’s quality control.

Methods for construction and
reduction of no dominated-
alternatives set (A,C)

eihods end modelsueed fo decivion of e protlens (5.0 |

Structure-functional and functor-
category description of models
and meta-models (A,B,C)

Methods of multi-attribute
utility theory (A,C)

Methods of analytic hierarchy
processes (A,B,C)

Methods of multi-attribute
alternatives ranking (C)

General meta-model, based on
dynamic alternative graphs,
for CO planning and
scheduling models’ quality
estimation and models’ quality
control (A,B,C)

Methods of verbal analysis

(E)

Methods for construction and
approximation of attainability
set in dynamic systems

~>

Poly-model complexes using
Bayesian techniques,
Knowledge Based approaches,
Artificial Neural Systems,
Fuzzy Logic techniques, and
Genetic Algorithms techniques

(A.B.C)

~>

models’ quality control

estimation

Qualitative and quantitative estimation of model classes
Methods of CO planning and scheduling models’ quality estimation and

Application software prototype for information fusion models quality

Improvement of design decisions, enhancement of their validity and quality
Design cost saving through errors detection at early phases of models’ life
cycle




The main phases of CO adaptive planning and scheduling

fPerturbations
Process
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