Models for Evaluating and Monitoring Efficiency of Supply Chain Networks

Sri Talluri, Ph.D. Hoagland-Metzler Endowed Professor Professor of Operations and Supply Chain Management The Eli Broad College of Business Michigan State University

WHO WILL MAKE BUSINESS HAPPEN? SPARTANS WILL.

Axia Institute at Michigan State University

- Established in Fall 2015 with support from Dow Chemical, Dow Corning, and multiple Midland based companies
- Emphasis is on collaborative solutions-focused research for a variety of industry problems
- Took over as the faculty director in Fall 2018
- Leverage the strengths of Supply Chain Management Department (ranked # 1 in the United States)

Motivation

- Dow Chemical's focus on efficiency of supply chain networks:
 - Current methods mainly focusing on cost optimization
 - Evaluate supply chain network performance in a more holistic manner
 - Develop an approach for monitoring and improving network performance
 - Redesign trigger

Performance Management

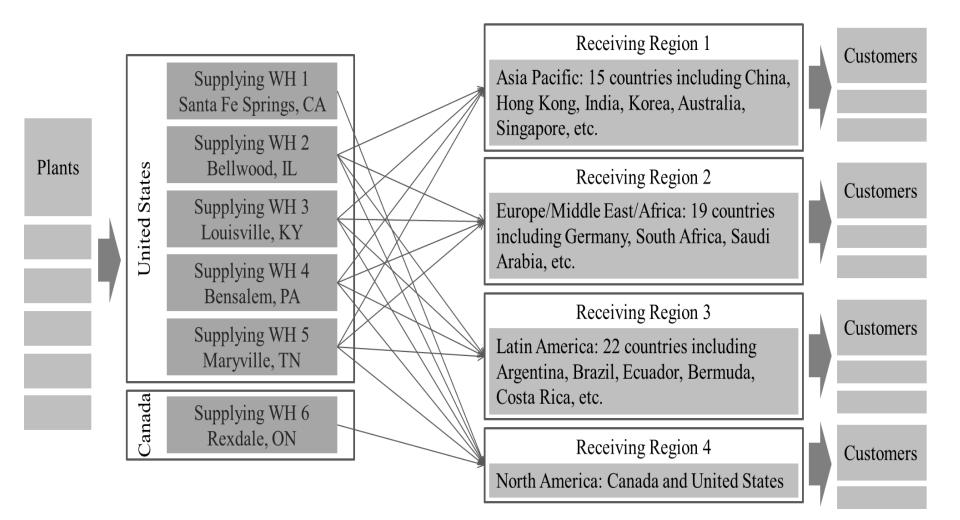
- Performance management literature (operations, engineering, and cost accounting) emphasizes the use of multiple measures (Kaplan and Norton 1996; Nanni et al. 1992; Adams et al. 1995)
- Kueng (2000) points that:
 - Performance is multidimensional and cannot be assessed by a single indicator and
 - Performance indicators are not independent (cost, quality, and time tradeoffs)
- SCOR model focuses on multiple supply chain metrics at strategic, tactical, and operational levels (Supply Chain Council 2004)

Supply Chain Performance, Structure and Firm Performance

- Impact of supply chain responsiveness and uncertainty on firm performance (Wagner et al. 2012)
- Supply chain flexibility (sourcing, manufacturing, logistics) and firm performance (Sanchez and Perez 2005; Merschmenn and Thonemann 2011)
- Supply chain configurations (decentralized vs. centralized designs and direct vs. indirect shipments) and impact on performance (Chiu and Kremer 2014; Rosales et al. 2013)
- Supply chain network design with cost and reliability tradeoffs (Yildiz et al. 2014); cost and time tradeoffs (Arntzen et al. 1995)

Contribution

- Given the emphasis on network design and its impact on multivariate performance:
 - We focus on developing an approach for effectively evaluating and monitoring the realized efficiency of supply chain networks based on multiple factors (aggregated metric)
 - Effectively consider interrelationships among factors (tradeoffs)
 - Assist in identifying any systematic trends/patterns in efficiency
 - Help trigger a network redesign need to improve performance


Case Company Details & Data Gathering Efforts

- Multinational Chemical Corporation
- Identified a Business Unit with the assistance of Case Company Research Team
- Multiple on-site and conference call meetings with the Research Team and the Business Unit Management Team to finalize the factors to utilize in the study and related data requirements
- Significant amount of effort in data gathering- multiple databases/systems

Supply Chain Network Details

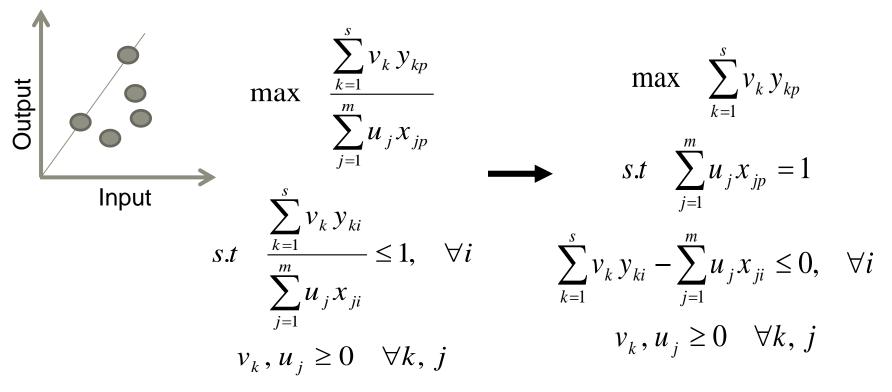
- Network:
 - 6 manufacturing plants
 - 6 warehouses
 - 869 customers
 - 699 products
- Dow's network optimization model:
 - Objective: Minimize transportation cost
 - Decisions: Reassign customers to existing warehouses

Supply Chain Network Details

Factors for Network Efficiency Analysis

- Inputs:
 - Total Inventory (\$)
 - Transportation Cost (\$/lb.)

- Outputs:
 - Customer Service Level (on-time delivery rate, %)
 - Throughput (sum of delivered net weight, lb.)


Data

- Approximately 3 years of data
- Before Supply Chain Network (SCN) Optimization
 - 16 months
- After SCN Optimization
 - 17 months

Methodology

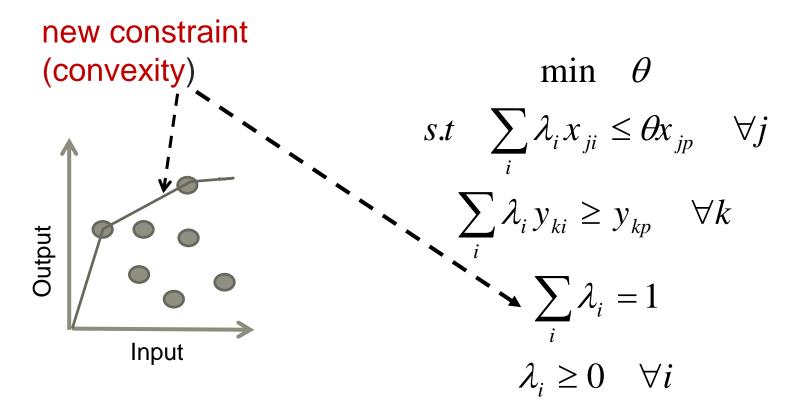
- Multi-factor productivity models Data Envelopment Analysis
- Statistical Process Control methods
- Non-parametric statistical tests and clustering methods
- Extensions based on cross-efficiency models

Efficiency Evaluation – CCR DEA Model

where: p is the unit being evaluated; s represents the number of outputs; m represents the number of inputs; y_{ki} is the amount of output k provided by unit i; x_{ji} is the amount of input j used by unit i; v_k and u_j are the weights given to output k and input j, respectively.

CCR DEA Model (Dual Form)

$$\min \theta$$

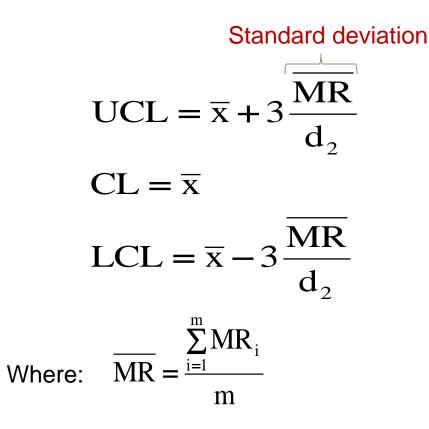

$$s.t \quad \sum_{i} \lambda_{i} x_{ji} \leq \theta x_{jp} \quad \forall j$$

$$\sum_{i} \lambda_{i} y_{ki} \geq y_{kp} \quad \forall k$$

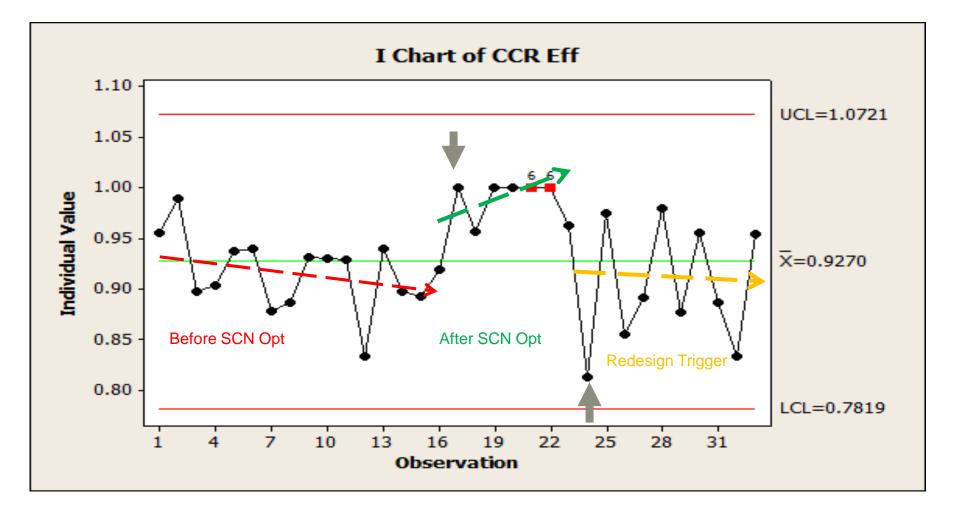
$$\lambda_{i} \geq 0 \quad \forall i$$

where: θ represents the efficiency score of unit *p*; λ s represent the dual variables that identify the benchmarks for inefficient units.

Efficiency Evaluation - BCC DEA Model

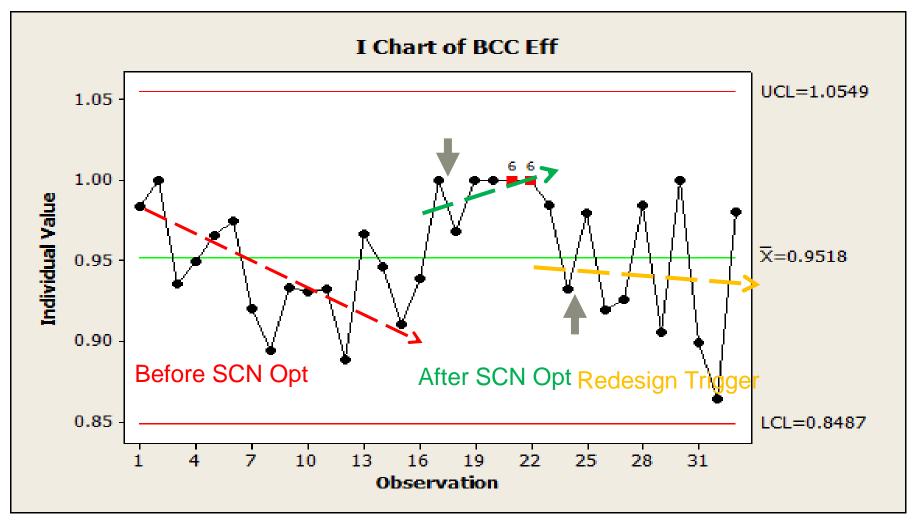

where: θ represents the efficiency score of unit *p*; λ s represent the dual variables that identify the benchmarks for inefficient units.

Windows Analysis


- Temporal data in efficiency evaluation
- Network is treated as a different entity in each time period
- Network is compared to itself over time

Individual Control Chart (X-Chart)

• Sample size of 1 (single efficiency score in each period)


Supply Chain Network Efficiency Results – Constant Returns to Scale

- 18 - © Michigan State University, 2019

WHO WILL MAKE BUSINESS HAPPEN? SPARTANS WILL.

Supply Chain Network Efficiency Results – Variable Returns to Scale

- 19 - © Michigan State University, 2019

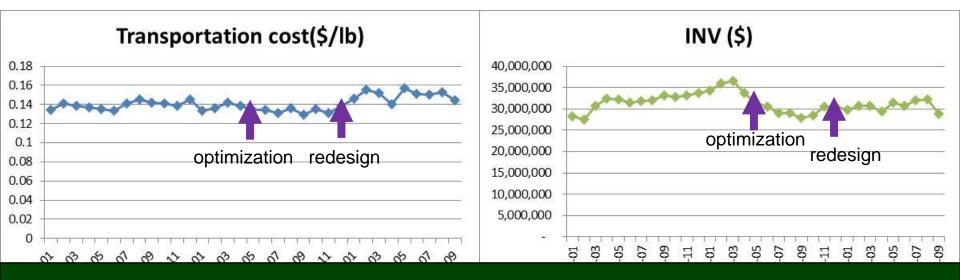
WHO WILL MAKE BUSINESS HAPPEN? SPARTANS WILL.

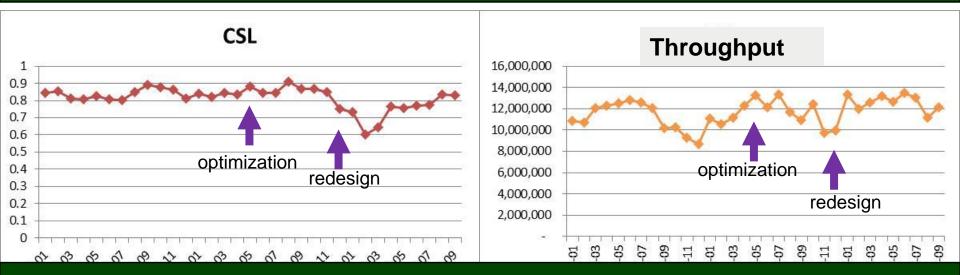
Before and After Efficiency Differences – Mann Whitney Test

- Efficiency scores (normality issues)
- Nonparametric test for differences in distributions Mann Whitney
- Hypotheses:
 - H_0 : No difference in efficiency scores between the two segments of data
 - H_1 : Efficiency scores of one segment is higher than the other segment

Before and After Efficiency Differences – Mann Whitney Test 1

- After optimization CCR efficiency scores are statistically better than before optimization scores
 - $n_1 = 16, n_2 = 7, p-value = 0.0004^{***}$
- After optimization BCC efficiency scores are statistically better than before optimization scores


•
$$n_1 = 16, n_2 = 7 p - value = 0.0011^{***}$$


Before and After Efficiency Differences – Mann Whitney Test 2

- After optimization CCR efficiency scores are statistically better than redesign trigger range scores
 - $n_1 = 7, n_2 = 10, p value = 0.0029^{***}$
- After optimization BCC efficiency scores are statistically better than redesign trigger range scores

•
$$n_1 = 7, n_2 = 10, p-value = 0.0112^{**}$$

Individual Factors

WHO WILL MAKE BUSINESS HAPPEN? SPARTANS WILL.

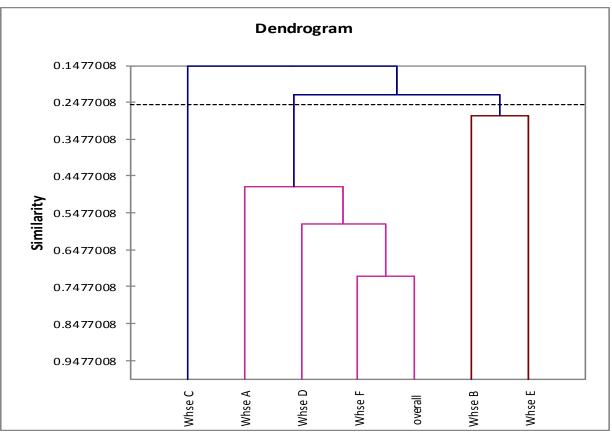
Some Observations

- Each of the individual factors may be in control but the joint impact may show something different!
- After optimization: Transportation cost decreasing, inventory decreasing
- Redesign trigger: Transportation cost increasing, CSL decreasing, inventory increasing
 - Disruptions such as winter storm and the subsequent transportation capacity tightness might be a factors

Impact of Disruptions

- The events include a wide range of failures:
 - Quality, transportation, inventory, production, documentation, and packaging issues
 - For each incident, the amount of products that were impacted was recorded. We used this information as a proxy for the size of the impact of the failure
- Hypotheses:
 - H_0 : No difference in mean impacted product amounts between the two segments of data (Before SCN Opt vs. After SCN opt, Redesign Trigger vs. After SCM Opt)
 - H_1 : First segment results in a higher mean impacted product amounts than the second segment

Impact of Disruptions


• Failed to reject the Null Hypotheses in both cases (p-values of 0.17 and 0.13, respectively)

	Mean	Std. Deviation
Before SCN Opt.	211427.1	46425.0
After SCN Opt.	183025.1	67329.4
Redesign Trigger	225537.6	54460.9

Warehouses vs. Network Efficiency

- Compared the overall network efficiency in each period to individual warehouse efficiencies
 - Efficiency evaluations for 6 x 33 units
- Clustering approach to investigate similarities in terms of network and warehouse efficiencies
- Helps focus on improvement strategies and resource allocations

Dendrogram based on CCR Scores

- Similarity: Spearman Correlation Coefficient; Agglomeration: Unweighted Pair-Group Average
- Cluster 1- A, D, F, Overall; Cluster 2- B, E; Cluster 3- C
- Initial focus is on improving the efficiencies of F, D, and A

Tukey's Multiple Comparisons: Warehouses

Transpo	ortatior	n Cost	(Low	to High
WH/Group	1	2	3	4
С	Х			
E	Х			
А	Х	Х		
F		Х	X	
D			Х	Х
В				Х

Customer Service (High to Low)

WH/Group	1	2	3
С	Х		
В	Х	Х	
F		Х	
E		Х	Х
А		Х	Х
D			Х

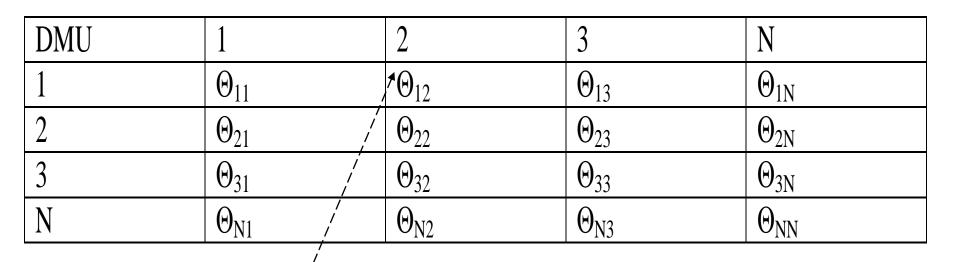
Inventory (Low to High)

WH/Group	1	2	3	4
В	Х			
С	Х			
E		Х		
Α			Х	
D				Х
F				Х

Throughput (High to Low)

	/ I	<u> </u>		/	
WH/Group	1	2	3	4	5
F	Х				
D		Х			
Α			Х		
E				Х	
В					Х
С					Х

 Warehouse F facing high inventory and transportation costs with lower customer service levels but high throughput rates (p-value < 0.01)


Limitations with CCR and BCC Models

- Unrestricted weight flexibility
- A unit can emphasize on few input and output factors in achieving high efficiency scores
- Cross-efficiencies can appease this issue

Cross-Efficiency Evaluations

- Cross efficiency in DEA allows for effective discrimination between niche performers and good overall performers
- Cross efficiency score of a unit represents how well the unit is performing with respect to the optimal weights of another unit
- A unit that achieves high cross efficiency scores is a good overall performer

Cross-Efficiency Matrix

Efficiency score of DMU 2 when evaluated with the optimal weights of DMU 1

Cross-Efficiency Evaluations

- Weights obtained from the CCR model may not be unique, which undermines the usefulness of the cross-efficiency matrix
- We utilize game models to obtain a robust set of weights for cross efficiency evaluations
- Set of weights that not only maximizes the efficiency of a unit but in some sense minimizes the efficiency of all other units

Cross-Efficiency Models – Blanket Formulations

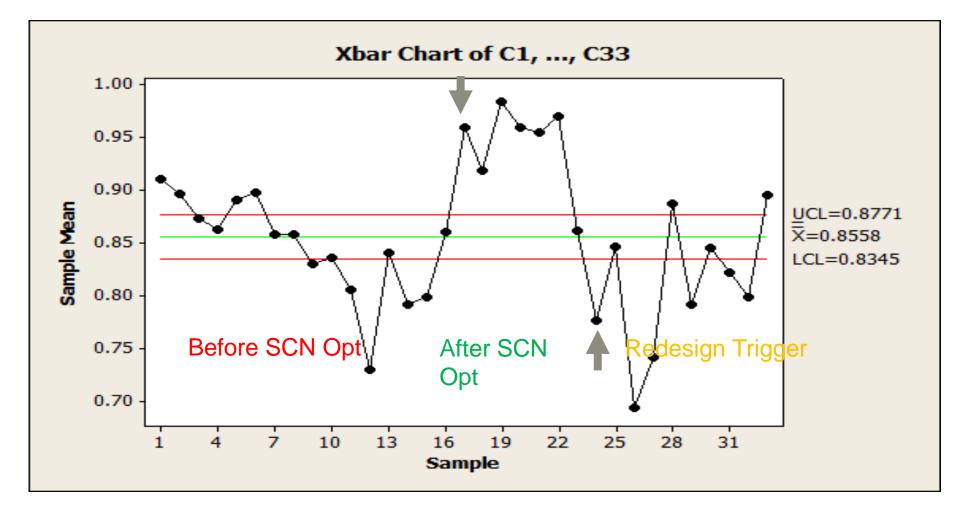
Where θ_p is the relative efficiency score of DMU p obtained from the CCR model

- 34 - © Michigan State University, 2019

WHO WILL MAKE BUSINESS HAPPEN? SPARTANS WILL.

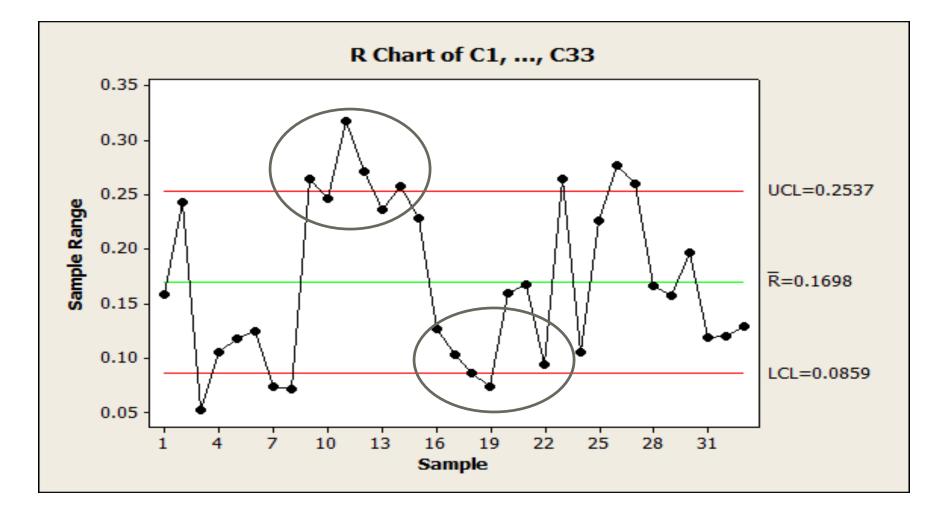
X-bar Chart

• UCL, LCL =
$$\bar{x} \pm 3 \frac{R}{d_2 \sqrt{n}}$$


• where \overline{x} is the average of all the cross-efficiency scores; d_2 is the table value obtained from standard quality control tables; \overline{R} is the mean sample range, which is calculated as:

•
$$\overline{R} = \left(\frac{\sum_{i=1}^{m} 1^{R_i}}{m}\right)$$
, where R_i is the difference between the largest and smallest cross efficiency scores

R Chart


- The control limits for the range R chart are defined by:
- UCL = $D_4 \overline{R}$
- LCL = $D_3 \overline{R}$
- Where, D_4 and D_3 are table values obtained from standard quality control tables.

Supply Chain Network Cross Efficiency Results: \bar{X} Chart

- 37 - © Michigan State University, 2019

Supply Chain Network Cross Efficiency Results: R-Chart

Conclusions and Next Steps

- Case Company is using our approach as a dashboard system to monitor network efficiency
- Make the network assessment more comprehensive
 - Plant level data
 - Upstream data (suppliers)
 - Efficacy of Network DEA models
 - Big data and interactions between various supply chain partners