KI-Services im wissenschaftlichen und industriellen Diskurs | HWR Berlin

Fraunhofer

IESE

Engineering of Industrial AI Solutions

Dr. Jens Heidrich, Division Manager "Smart Digital Solutions"

<u>jens.heidrich@iese.fraunhofer.de</u>

Fraunhofer IESE

Page 1 6/24/2022 © Fraunhofer IESE

Data Scientist – "the sexiest job of the 21st century" (Harvard Business Review)

EXPERTISE DATA MINING DATA SCIENCE ANALYTIC ALGORITHMS SYSTEMS 21st Century Business Expertise GI, 2019 ARREITSPARIE DATA SCIENCE: LERN- UND AUSBILDUNGSINHALTE https://gi.de/datascience

[T. Davenport and D.J.Patil: Data scientist: the sexiest job of the 21st century, Harvard Business Review, 2012] [Pictures from https://unsplash.com, Wordle from http://www.edwordle.net]

Page 2

NIST SP 1500-1, 2015

RESEARCH

STATISTICS

DOMAIN

Outline

- Why shall a company deal with AI?
- What makes AI systems special and difficult to build?
- How to engineer AI systems in industry?
- How to identify the right use cases?
- How to assure qualities of AI systems?

Why companies deal with (dependable) AI

Operational excellence

- Increasing effectiveness and efficiency of core processes
 - Preventive and predictive maintenance
 - Finding defective parts
- \Rightarrow Saves costs and increases revenues

Innovation

- New innovative products and services
 - Autonomous driving, collaborative robots (Cobots)
 - Platform / data-based services
- \Rightarrow New business models and customer groups

Customer intimacy

- Better understanding customers
 - Buying habits and interests
 - Custom-tailored products and offerings
- \Rightarrow Increases sales and revenues

Competition

Fear of being driven out of business by companies using AI

Why is it important to talk about quality of AI systems?

=

Security

 \boldsymbol{x}

"panda"

57.7% confidence

"nematode" 8.2% confidence

[Source: http://www.cleverhans.io/security/privacy/ml/2016/12/16/breaking-things-iseasy.html]

[Source: Ivan Evtimov, et al.: "Robust Physical-World Attacks on Machine Learning Models", arXiv:1707.08945v5, 04/2018]

speed LIMIT **45**

x +

 $\epsilon \operatorname{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$

"gibbon"

99.3 % confidence

Safety

[Source: https://www.theregiste r.co.uk/2017/06/20/ tesla_death_crash_ac cident_report_ntsb/]

[Source: https://www.thenatio nal.ae/business/uber -turned-offvolvo-crashprevention-systembefore-fatalaccident-1.716390]

Qualities of AI Systems and specifically Dependability of AI Systems

[Source: VDE application rule VDE-AR-E 2842-61, DKE/AK 801.0.8 material for the AR "Development and Trustworthiness of autonomous/cognitive Systems"]

- Dependability of a system describes "its ability to avoid unacceptable failures in the provision of a service or functionality" (Jean-Claude Laprie)
- Dependability is crucial when it comes to using AI in the context of critical application fields, such as:
 - Mobility and logistics: autonomous driving functions, traffic management systems, etc.
 - Industrie 4.0: collaborative robots, driverless transport systems, etc.
 - Digital Health: prevention, diagnosis, and therapy of diseases, surgery robots, etc.
 - Smart Energy: energy controlling and management systems, service robots, etc.
- For those kind of AI systems the use of AI may bear a high risk for direct / indirect personal casualty

EU AI Act: Classification of AI Systems and Requirements based on Risk

Example: Regulations and Standards in Production Domain

Q Dependable AI

Х

Typical Industry Challenges for Engineering AI Systems

AI System Engineering Process

Ramp-Up and Ideation

- Limited data science and software engineering competencies
- Finding the right use case and business case
- · Availability of data

Construction and V&V

- Build product from prototype
- Unclear how to proof compliance to regulations and standards
- Approaches for testing and certification
- Easy-to-use development environments for Al systems

Operation

- Observation and management of Al performance at runtime
- Maintenance of AI models

[Partially based on S. Wrobel, Fraunhofer IAIS, Fraunhofer Technologietag, Stuttgart, February 2019]

Q Dependable AI

Overview of Process for the Engineering of AI Systems

Page 9 6/24/2022 © Fraunhofer IESE

Q Dependable Al

Al Innovation Labs: Business Solution

[Source: © Business Model Canvas by strategizer.com]

Х

Al Innovation Labs: Technical Solution

Predictive Maintenance

7

Model Accuracy

Truth	Positive	Negative (Not
Predicted	(Defective)	Defective)
Positive (Defective)	True Positives	False Positives
Negative (Not	False	True
Defective)	Negatives	Negatives

data mining," Journal of Data Warehousing, vol. 5, no. 4, pp.13—22]

Machine Log File

Training and Test Data

Time		Anale	Noise	Accuracv
2019-11-11	06:22:23	5°	100 dBA	99%
2019-11-11	06:22:33	8°	99 dBA	99%
2019-11-11	06:22:43	30°	110 dBA	99%
2019-11-11	06:22:53	45°	200 dBA	70%
2019-11-11	06:23:03	8°	101 dBA	99%

Simple Regression Model

- - Robust Least Median Squares

Assurance Cases for AI Systems

- Upcoming regulations demand certification of high-risk AI
- Currently, no standards exist that can easily be applied
- Assurance cases are a structured chain of arguments with associated evidence that allows the assumption that a product in a certain usage environment meets the set goals (such as safety)
- They are well-known concepts from the safety engineering domain and have proven to be applicable for Al systems in different domains
- Currently, they are seen as the best practice for arguing about the dependability of an AI System!

[Source: Kläs, M., et al.,"Using Complementary Risk Acceptance Criteria to Structure Assurance Cases for Safety-Critical AI Components," AI Safety 2021 at International Joint Conference on Artifical Intelligence (IJCAI), Montreal, Candada, 2021.]

Uncertainty Management for AI Components

- Uncertainty is inherent in data-based solutions and its sources must be clearly identified, quantified and managed
- Uncertainty Wrappers allow for identification and estimation of uncertainty in AI components
- Used for generating evidences in an assurance case
- Uncertainty wrappers at runtime allow the system to go to a safe state if the **estimated** uncertainty is too high

[Source: Kläs, M., et al.,"Handling Uncertainties of Data-Driven Models in Compliance with Safety Constraints for Autonomous Behaviour," Proceedings of European Dependable Computing Conference (EDCC 2021), Munich, Germany, IEEE, 2021.]

Onion Shell Layers

Q Dependable AI

Conclusions

• Al systems bear a lot of potential Engineering AI systems is challenging Classic methods for V&V hardly applicable Methods and tools only partially available (part of research) Building AI systems require a proper engineering process Think about use cases and benefits before technologies and data lakes Follow on iterative, prototyping-oriented process for trying out new ideas Identify and assure quality goals of AI systems Master uncertainty of Al systems