An Assurance Case Pattern to Argue Quantitative Safety Targets for AI Components Considering Their Complete Life-Cycle

Michael Kläs, Lisa Jöckel, Rasmus Adler, Jan Reich
 michael.klaes, lisa.joeckel, rasmus.adler, jan.reich@iese.fraunhofer.de
 Fraunhofer Institute for Experimental Software Engineering IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

Using Complementary Risk Acceptance Criteria to Structure Assurance Cases for Safety-Critical AI Components

Integrating Quantitative Evidences of Design and Runtime Safety Measures to Argue Quantitative Safety Targets for AI Components

Example safety target requesting a confidence level of $\phi = 0.9999$ similarly to various applied to ensure that the probability of a safety violation by the DDC is less than 10^{-5}.

Summary
We propose how to argue by means of a mathematical foundation that a DDC has achieved a given quantitative safety target. We integrate quantitative evidences from statistical testing, runtime monitoring, data quality assessment, and anticipated scope compliance.