
Software Marketplaces for Extensible Web Apps

17.11.2022 © Fraunhofer IESESeite 1

Curse and Blessing for Security Research

Software marketplaces can pose a high security risk:

• (Almost) anyone can contribute…

• … with code that is actually executed

• Establishing quality gates is difficult and costly

• Vulnerabilities potentially affect a large number of users

Software marketplaces also give opportunities for research:

• Often share the same technology platform (libraries,

frameworks) which facilitates pattern-based searching

• May provide large data sets which again can be used as

evaluation baseline: Vulnerability history

Software Marketplaces for Extensible Web Apps

17.11.2022 © Fraunhofer IESESeite 2

Vulnerability histories: What can we learn from the past?

In case of WordPress we found that…

• … 98.97% of all WordPress vulnerabilities in 2021 are caused by 3rd

party plugins from the plugin store

• … more than 84.6% of all vulnerabilities are related to just five

types of improper input validation vulnerabilities:

• Cross-site scripting

• SQL injection

• Cross-site request forgery

• Unrestricted file upload

• Path traversal

• … the overall disclosed vulnerabilities reached a peak of 971 CVE

entries in 2021

→ If a »perfect« code analysis tool could detect all user input

vulnerabilities (= 84.6% of 2021 WordPress vulns!) from a

given history, would it detect new vulnerabilities as well?

→ How does tweaking precision and recall in the history affect

the performance in the wild?

S
ta

g
e
 1

Idea: Systematic Specialization of Taint Analyzers

17.11.2022 © Fraunhofer IESESeite 3

»Training« the Taint Analyzer with the Vulnerability History (of a Software Marketplace)

Level 0Level 1

(State-of-the-Art
Taint analyzer)

Add tainted source and
sink code patterns

e.g., $wpdb, wpdb_prepare(…)

Does the analyzer detect all vulnerabilities
from history? → max(recall)

S
ta

g
e

 2

Level 1 Level 2

apply on random sample

Analyze sanitizer code
patterns

adapt taint analyzer
based on sample results

Does the analyzer detect all vulnerabilities
from history precisely? → max(precision)

Repeat stage 2 until a sufficient precision is reached…

