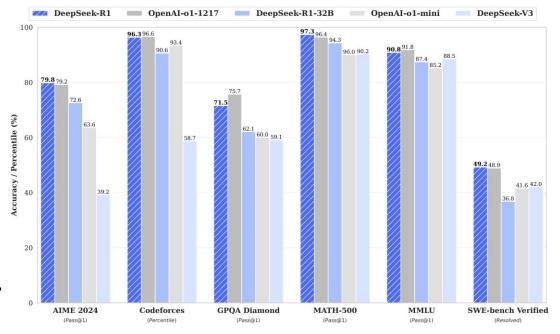
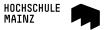


Towards Reliable AI / ML Testing by Systematic Assessment of Test Data Quality

Janek Groß, Lisa Jöckel, Michael Kläs, Pascal Gerber

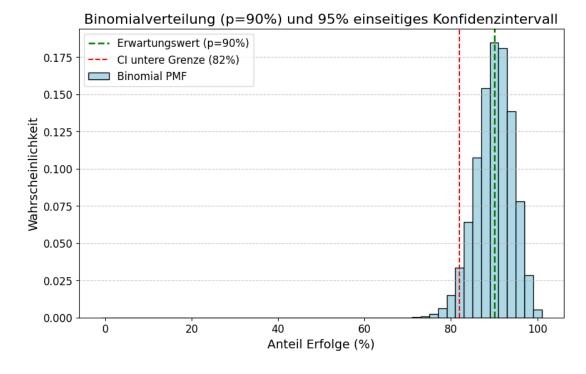

Bewertung von Testdaten Qualität Motivation

Wie werden KI Modelle Verglichen?


- Anwendung auf Daten
- Berechnung von Metriken

Probleme:

- Nur deskriptiv, keine Information über Konfidenz.
- KI Testen gleicht eher statistischem Test.
- Voraussetzungen statistischer Tests oft nicht erfüllt.



https://github.com/deepseek-ai/DeepSeek-R1/blob/main/figures/benchmark.jpg

Bedingung Statistischer Tests Beispiel: Binomialverteilung

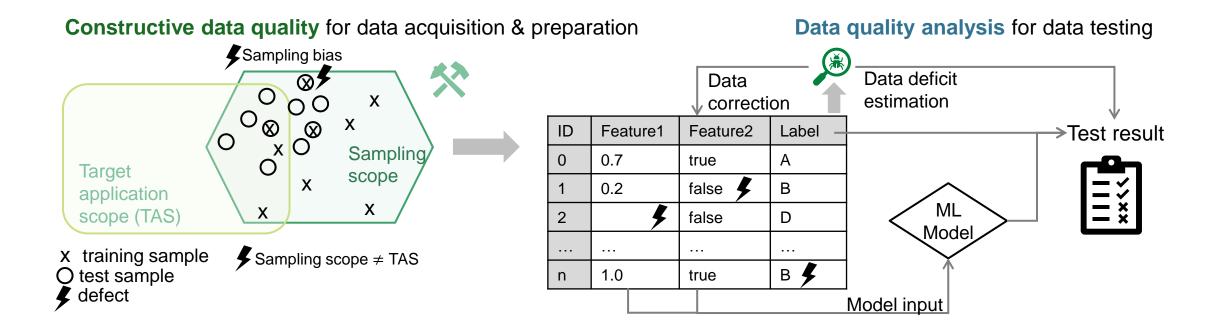
- Güte von KI Modell Ausgaben i.d.R. auf binäres richtig/falsch reduzierbar.
- Statistische Voraussetzung Konfidenzintervall der Binomialverteilung:
 - Identische und stochastisch unabhängige Verteilung der Testdaten
 - Vorregistrierte Hypothesen
 - Externe Validität

Vorgeschlagene Testdatenqualitätsaspekte

Representativeness:

Die Modelleingaben folgen der gleichen Verteilung der auch die Daten die während der Anwendung beobachtet werden folgen. (Identische Verteilung, Externe Validität)

Label Validity:


Die Daten sind korrekt gelabelt. (Identische Verteilung, Externe Validität)

– Self-containment:

Die Datenpunkte erlauben keine Rückschlüsse über andere Datenpunkte aus dem Trainingsoder Testdatensatz (Unabhängigkeit, Vorregistrierte Hypothesen)

Beispielmethoden für Testdatenqualität Überblick

Beispielmethoden für Testdatenqualität Überblick

Self-containment

- Unseen test data
 - Separation of training and test data
 - Collection of new test data
 - Prevention of information leaks
- Consideration of inherent dependencies
 Timeseries-aware data split

Representativeness

- Sampling strategies
 - Random, stratified, or cluster sampling
- Tests for homogeneity
 - Consideration of realistic quality deficits
- Detection of outliers, extreme or missing data points

Label validity

- Systematic labeling
 - Software tools
- Multiple labelers/iterations
 - Reliability analysis
- Detection of wrong labels
 Confident learning¹

Beispiel Anwendung: Klassifikation von Atemwegserkrankungen Datensatz

- Tabellarische Daten
- 38,537 Patienten
- 18 verschiedene Atemwegserkrankungen
- Public Health Department New Mexico
- 2019-2021

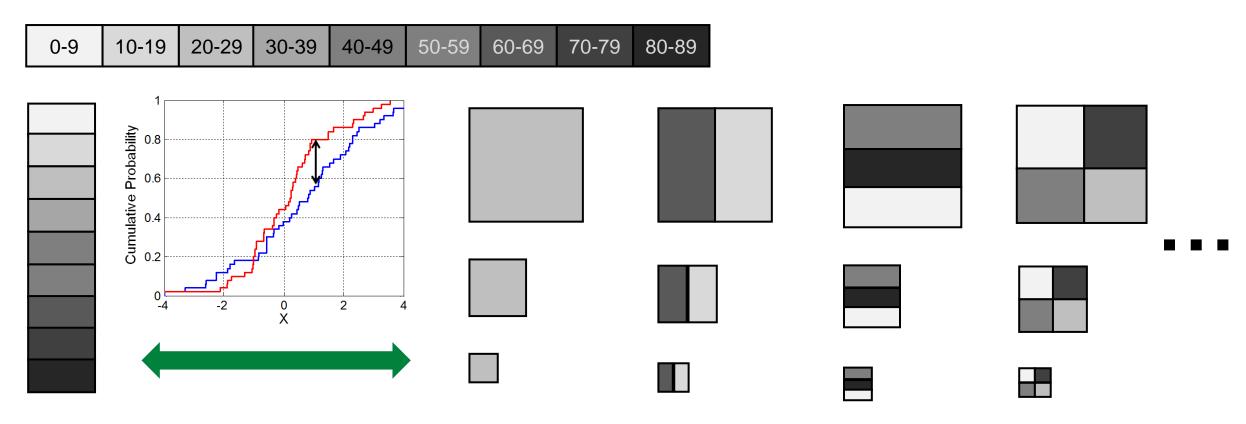
≜ Symptoms =	# Age =	≙ Sex =	∆ Disease =	△ Treatment =	A Nature =
coughing	5	female	Asthma	Omalizumab	high
tight feeling in the chest	4	female	Asthma	Mepolizumab	high
wheezing	6	male	Asthma	Mepolizumab	high
shortness of breath	7	male	Asthma	Mepolizumab	high

Beispiel Anwendung Methode: Confident Learning¹

– Ziel:

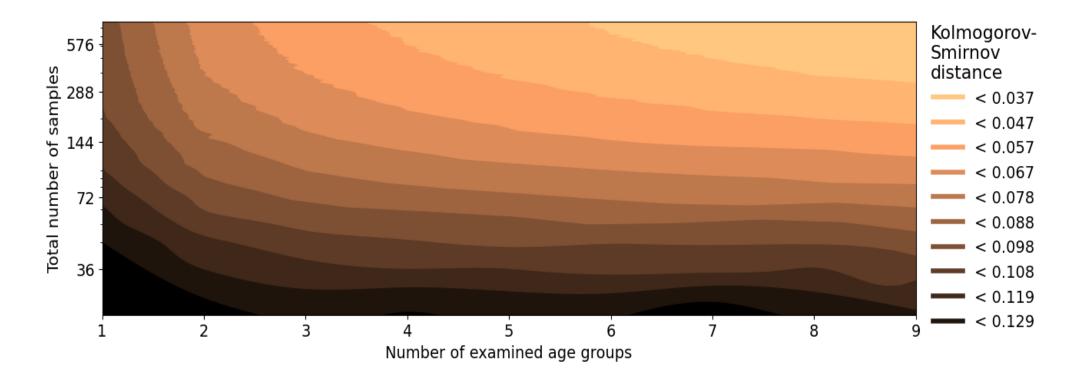
Aufdecken von Labelfehlern, Abschätzung Anteil verbleibender Labelfehler

- Methode:
 - Entscheidungsbaum Classifier trainiert auf 70% der Daten
 - Klassenwahrscheinlichkeiten geben Aufschluss über mögliche Label Verwechselungen.
- Ergebnisse:
 - 79 von 98 künstlich erzeugten Label Fehlern konnten entdeckt werden
 - Auf den original Daten wurden keine Fehler entdeckt.


	Predicted label errors	Predicted correct labels	Σ
Artificiallyintroduced label errors	79 T rue P ositives	19 F alse N egatives	98
Originallabels	1 F alse P ositive	9719 T rue N egatives	9720
Σ	80	9738	9818

Metric:	Value:
Accuracy	0.9980
Precision	0.9875
Recall	0.8061
F1 Score	0.8876
Specificity	0.9999

Beispiel Anwendung Methode: Representativitätsanalyse der häufigsten Atemwegserkrankungen


Ziel: Optimalen Tradeoff zwischen Menge und Vielfalt der Testdaten finden.

Beispiel Anwendung Ergebnis: Representativitätsanalyse der häufigsten Atemwegserkrankungen

Ergebnis: Leitfaden für die Datensammlung

Angewandte Informatik und Geodäsie

Vielen Dank für Ihre Aufmerksamkeit.

Kontakt

Janek Groß i3Mainz

E janek.gross@hs-mainz.de

13 mainz Lisa Jöckel Fraunhofer IESE

E lisa.joeckel@iese.fraunhofer.de

Dr. Michael Kläs Fraunhofer IESE

Pascal Gerber

Fraunhofer IESE

